M2] Lecture 10/03/I2

William Holmes

Posing a linear system

- Suppose a sports stadium sells three products, I) tickets, 2) drinks, 3) food. Suppose on a given day 55000 transactions are processed with total sales of $\$ 1,670,000$ and total food / drink sales of 70,000 . If each ticket costs $\$ 40$, each drink $\$ 4$, and each food item $\$ 6$, how much of each was purchased.

Define Variables

- Suppose a sports stadium sells three products, I) tickets, 2) drinks, 3) food. Suppose on a given day 55000 transactions are processed with total sales of $\$ 1,670,000$ and total food / drink sales of 70,000 . If each ticket costs $\$ 40$, each drink $\$ 4$, and each food item $\$ 6$, how much of each was purchased.
- Variables are the quantities you want to find.

$$
\begin{aligned}
& x_{1}=\text { number of tickets } \\
& x_{2}=\text { number of drinks } \\
& x_{3}=\text { number of food items }
\end{aligned}
$$

Mathematically

Formulate Information

- Suppose a sports stadium sells three products, I) tickets, 2) drinks, 3) food. Suppose on a given day 55000 transactions are processed with total sales of $\$ 1,670,000$ and total food / drink sales of 70,000 . If each ticket costs $\$ 40$, each drink $\$ 4$, and each food item $\$ 6$, how much of each was purchased.
- 3 unknown variables requires three distinct pieces of information (i.e. equations).

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =55000 \\
40 x_{1}+4 x_{2}+6 x_{3} & =1670000 \\
4 x_{2}+6 x_{3} & =70000
\end{aligned}
$$

Form Augmented Matrix

- Suppose a sports stadium sells three products, I) tickets, 2) drinks, 3) food. Suppose on a given day 55000 transactions are processed with total sales of $\$ 1,670,000$ and total food / drink sales of 70,000 . If each ticket costs $\$ 40$, each drink $\$ 4$, and each food item $\$ 6$, how much of each was purchased.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =55000 \\
40 x_{1}+4 x_{2}+6 x_{3} & =1670000 \\
4 x_{2}+6 x_{3} & =70000
\end{aligned} \longrightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 55000 \\
40 & 4 & 6 & 1670000 \\
0 & 4 & 6 & 70000
\end{array}\right]
$$

Solve

- Suppose a sports stadium sells three products, I) tickets, 2) drinks, 3) food. Suppose on a given day 55000 transactions are processed with total sales of $\$ 1,670,000$ and total food / drink sales of 70,000 . If each ticket costs $\$ 40$, each drink $\$ 4$, and each food item $\$ 6$, how much of each was purchased.

$$
x_{1}=40000, \quad x_{2}=10000, \quad x_{3}=5000
$$

Terminology

- A matrix is said to be in row echelon form if:
I. The first nonzero entry in each row is I (referred to as a leading one)

2. The entry below each leading one is 0 .
3. Any rows containing all zeros are at the bottom.

Example

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & 1 & 3
\end{array}\right]
$$

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Why Row Echelon Form?

- Because this it is easy to compute a solution using back substitution.

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & 1 & 3
\end{array}\right] \longrightarrow \begin{gathered}
x+y+2 z=9 \\
y-\frac{7}{2} z=-\frac{17}{2} \\
z=3
\end{gathered}
$$

Terminology

- Gaussian Elimination is the process of using elementary row operations to bring a matrix to row echelon form.
- Note:This is a very methodical process that can be applied almost the same way to any problem.

Gaussian Elimination

$$
\left[\begin{array}{ccc|c}
2 & 2 & 4 & 18 \\
2 & 4 & -3 & 1 \\
3 & 6 & -5 & 0
\end{array}\right]
$$

- Step I:Turn top left corner into a "leading one".
- . 5 * RI

$$
2 \quad 2 \quad 4 \quad 18 \rightarrow 1 \quad 1 \quad 2 \quad 9
$$

Gaussian Elimination

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
2 & 4 & -3 & 1 \\
3 & 6 & -5 & 0
\end{array}\right]
$$

- Step 2: Use that "leading one" to eliminate all elements below it (turn them into 0).
- $-2 *$ R I + R2, Replace R2 with this
- $-3 *$ RI + R3, Replace R3 with this

Gaussian Elimination

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
2 & 4 & -3 & 1 \\
3 & 6 & -5 & 0
\end{array}\right] \quad
$$

- Step 2: Use that "leading one" to eliminate all elements below it (turn them into 0).
- $-2 *$ R I + R2, Replace R2 with this
- $-3 *$ RI + R3, Replace R3 with this

Gaussian Elimination

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 2 & -7 & -17 \\
0 & 3 & -11 & -27
\end{array}\right]
$$

- Step 3:Turn next diagonal element into a leading one : .5*R2
- Step 4: Eliminate all non-zeros below it.
- $-3 * R 2+$ R3

Gaussian Elimination

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & -\frac{1}{2} & -\frac{3}{2}
\end{array}\right]
$$

- Step 5 -Turn the next diagonal element into a leading one.
- -2*R3

General Process

$$
\left[\begin{array}{cccc|c}
2 & 2 & 2 & 4 & 18 \\
-3 & 2 & 4 & -3 & 1 \\
2 & 3 & 6 & -5 & 0 \\
-2 & 1 & 4 & -3 & 11
\end{array}\right]
$$

- Turn first diagonal element into a leading one by multiplying the entire row by a constant (I/2).
- Eliminate all the zeros below it.
- Continue to next column until finished.

Possible Problems

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 0 & -3 & 1 \\
0 & 2 & 6 & 0
\end{array}\right]
$$

- You cant turn a 0 into a I by multiplication.
- But, you can swap rows.

The Fix

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 0 & -3 & 1 \\
0 & 2 & 6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 2 & 6 & 0 \\
0 & 0 & -3 & 1
\end{array}\right]
$$

- Swap rows 2 and three.
- Proceed as before.

Reduced Row Echelon

Form

- A matrix is said to be in Reduced Row Echelon Form if
I. It is in row echelon form.

2. Each leading one is the only non-zero element in its column.

Examples

Possible Solution Outcomes

$$
\left.\begin{array}{ccc|c}
x & y & z \\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right.} & 5
\end{array}\right] \quad \begin{aligned}
& x=3 \\
& y=-2 \\
& z=5
\end{aligned}
$$

- Unique Solution

Possible Solution Outcomes

$$
\left.\left.\begin{array}{ccc}
x & y & z \\
{\left[\begin{array}{c}
1 \\
\end{array} 0\right.} & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array} \right\rvert\,-2\right]\left[\begin{array}{l}
x=3 \\
y=-2 \\
0=5
\end{array}\right.
$$

- No Solution

Possible Solution Outcomes

$$
\left[\begin{array}{ccc|c}
x & y & z & \\
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow \begin{aligned}
& x=3 \\
& y=-2 \\
& z=\text { anything }
\end{aligned}
$$

- Infinitely Many Solutions
- Final Row $0 x+0 y+0 z=0$

Possible Solution Outcomes

$$
\left.\begin{array}{ccc|c}
x & y & z \\
{\left[\begin{array}{cc}
1 & 1
\end{array}\right.} & 0 & 3 \\
0 & 1 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow \begin{aligned}
& x+y=3 \\
& y+z=-2
\end{aligned}
$$

- Effectively, two equations and three unknowns.
- Underdetermined.

Possible Solution Outcomes

$$
\left.\begin{array}{ccc|c}
x & y & z \\
{\left[\begin{array}{cc|c}
1 & 1 & 0 \\
0 \\
0 & 1 & 1
\end{array}\right.} & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \longrightarrow \quad \begin{aligned}
& x=3-y \\
& z=-2-y
\end{aligned}
$$

- For each ' y ', you get a solution.
- Called a one parameter family of solutions.

Possible Solution

 Outcomes$$
\begin{gathered}
x_{1} x_{2} \\
x_{3}
\end{gathered} x_{4} .
$$

- For each ' y ', you get a solution.
- Called a one parameter family of solutions.

Possible Solution Outcomes

\[

\]

- For each ' $x 3$, $x 4$ ', you get a solution.
- Called a two parameter family of solutions.

Possible Solution

Outcomes

$$
\left[\begin{array}{cccc|c}
1 & 0 & -1 & 2 & 5 \\
0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{llll|l}
1 & 0 & 0 & 2 & 5 \\
0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- These two have the exact same two parameter family of solutions.
- The initial number of equations (ie. rows) can be deceiving!

